High-precision SIMS oxygen, sulfur and iron stable isotope analyses of geological materials: accuracy, surface topography and crystal orientation

نویسندگان

  • N. T. Kita
  • J. M. Huberty
  • R. Kozdon
چکیده

A high-precision SIMS analysis technique has been established for oxygen, sulfur, and iron isotope ratios and applied to a wide range of geoscience research areas using a Cameca IMS-1280 at the Wisconsin Secondary Ion Mass Spectrometer Laboratory (WiscSIMS). Precision and accuracy of 0.3‰ is achieved routinely for the measurement of 18O/16O ratio using multicollection Faraday Cup (FC) detectors and primary Cs+ beam size of 10 μm. Smaller beam sizes of 3 μm to <1 μm yield precisions of 0.7–2‰ using a multicollection Electron Multiplier (EM) in pulse-counting mode for 18O. We evaluate small SIMS analytical biases at the level of a few ‰ or less using standard minerals with homogeneous oxygen isotope ratios: (i) topography of samples related to polishing relief of grains and location of analysis in a sample holder; and (ii) crystal orientation effects in magnetite (Fe3O4). The latter effect has not been detected for oxygen isotope ratio measurements in other minerals including a variety of silicate, oxide, and carbonate minerals at WiscSIMS. However, similar analytical biases that are correlated with crystal orientation have been identified from Fe isotope analyses in magnetite and S isotope analysis in sphalerite (ZnS), and many minerals have not yet been evaluated. The total range of analytical bias among randomly oriented magnetite grains becomes smaller by reducing the sputtering energy of the primary ions (from 20 to 10 keV), which may help reduce crystal orientation effects. Copyright c © 2010 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High precision SIMS oxygen isotope analysis and the effect of sample topography

a r t i c l e i n f o Keywords: Secondary ion mass spectrometer Isotope ratios Oxygen High precision Instrumental bias We have developed highly precise and accurate in situ SIMS stable isotope analytical protocols using the IMS-1280 at the University of Wisconsin, through careful tuning of the instrument, stable electronics, and improved protocols for sample preparation, standardization and aut...

متن کامل

The origin of the Bentonite deposits of Tashtab Mountains (Central Iran): Geological, Geochemical, and Stable Isotope evidences

Bentonite deposits of economic interest are widespread in Tashtab Mountains (Khur), east of Isfahan province, Iran. Several bentonite deposits have been developed in this area as a result of Eocene volcanic alteration. These deposits are classified as Khur bentonite horizon. XRD analyses reveal that alteration products consist of Na-montmorillonite, kaolinite, quartz, calcite, and crystobalite....

متن کامل

Oxygen and iron isotope constraints on near-surface fractionation effects and the composition of lunar mare basalt source regions

Oxygen and iron isotope analyses of low-Ti and high-Timare basalts are presented to constrain their petrogenesis and to assess stable isotope variations within lunar mantle sources. An internally-consistent dataset of oxygen isotope compositions of mare basalts encompasses five types of low-Ti basalts from the Apollo 12 and 15 missions and eight types of high-Ti basalts from the Apollo 11 and 1...

متن کامل

Mineralography, geochemistry and Sulfur isotope study in 16B magnetite mineralization anomaly, Bafgh, Yazd

Anomaly XVI-B located in Central Iran Structural Zone. The oldest rock formations in this study area are related to metamorphic rocks which are included gneiss, micaschist, amphibolite and megmatite. Mineralized intruded mass distinguished by alkaline diorite-syenite that cut Bonoshorow metamorphic complex and limestone units. Metallic mineralization is occurred in syenite, gabbro and skarn roc...

متن کامل

HIGH-PRECISION SILICON ISOTOPE RATIO MEASUREMENTS OF EARTH AND ENSTATITIC METEORITES AND IMPLICATIONS FOR Si ISOTOPE FRACTIONATION DURING CORE FORMATION

Introduction: Core formation processes in planets may impart stable isotope ratio signatures on the bulk silicate Earth due to partitioning between the metallic core and silicate [1]. Enstatite chondrites (E-chondrites) are the only primitive meteorite group with stable oxygen isotope compositions similar to Earth [2]. The Echondrites also possess a metal phase with substantial amounts of Si. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010